1,550 research outputs found

    Magnetization waves in Landau-Lifshitz Model

    Full text link
    The solutions of the Landau-Lifshitz equation with finite-gap behavior at infinity are considered. By means of the inverse scattering method the large-time asymptotics is obtained.Comment: AmSTeX, Ver. 2.1h, 5 pages, amsppt style, 1 figur

    Factors affecting lamb eating quality and the potential for their integration into an MSA sheepmeat grading model

    Get PDF
    Major efforts in the sheep industry to control eating quality have resulted in reduced product variability. Yet inconsistent eating quality for consumers remains, due to a degree of inaccurate representation of cut quality. Eating quality defined through a complex interplay of different factors can be predicted for individual cuts, and Meat Standards Australia (MSA) grading schemes have been developed to achieve these defined quality outcomes. This review outlines the justifications to refine the current sheepmeat MSA pathways system to transition into a cuts-based prediction model and details some of the factors affecting sheepmeat eating quality as key factors under consideration into the new model. The development of the new sheepmeat MSA prediction model will allow for more efficient carcass sorting to underpin a value based payment system throughout the supply chain. However it requires the inclusion of individual carcass yield and eating quality measurements (i.e. IMF). Furthermore, the adoption challenges internationally of an MSA like model are discussed

    The Erpenbeck high frequency instability theorem for ZND detonations

    Full text link
    The rigorous study of spectral stability for strong detonations was begun by J.J. Erpenbeck in [Er1]. Working with the Zeldovitch-von Neumann-D\"oring (ZND) model, which assumes a finite reaction rate but ignores effects like viscosity corresponding to second order derivatives, he used a normal mode analysis to define a stability function V(\tau,\eps) whose zeros in ℜτ>0\Re \tau>0 correspond to multidimensional perturbations of a steady detonation profile that grow exponentially in time. Later in a remarkable paper [Er3] he provided strong evidence, by a combination of formal and rigorous arguments, that for certain classes of steady ZND profiles, unstable zeros of VV exist for perturbations of sufficiently large transverse wavenumber \eps, even when the von Neumann shock, regarded as a gas dynamical shock, is uniformly stable in the sense defined (nearly twenty years later) by Majda. In spite of a great deal of later numerical work devoted to computing the zeros of V(\tau,\eps), the paper \cite{Er3} remains the only work we know of that presents a detailed and convincing theoretical argument for detecting them. The analysis in [Er3] points the way toward, but does not constitute, a mathematical proof that such unstable zeros exist. In this paper we identify the mathematical issues left unresolved in [Er3] and provide proofs, together with certain simplifications and extensions, of the main conclusions about stability and instability of detonations contained in that paper. The main mathematical problem, and our principal focus here, is to determine the precise asymptotic behavior as \eps\to \infty of solutions to a linear system of ODEs in xx, depending on \eps and a complex frequency τ\tau as parameters, with turning points x∗x_* on the half-line [0,∞)[0,\infty)

    Magnetic ordering of Mn sublattice, dense Kondo lattice behavior of Ce in (RPd3)8Mn (R = La, Ce)

    Full text link
    We have synthesized two new interstitial compounds (RPd3)8Mn (R = La and Ce). The Mn ions present in "dilute" concentration of just 3 molar percent form a sublattice with an unusually large Mn-Mn near neighbor distance of ~ 85 nm. While the existence of (RPd3)8M (where M is a p-block element) is already documented in the literature, the present work reports for the first time the formation of this phase with M being a 3d element. In (LaPd3)8Mn, the Mn sub-lattice orders antiferromagnetically as inferred from the peaks in low-field magnetization at 48 K and 23 K. The latter peak progressively shifts towards lower temperatures in increasing magnetic field and disappears below 1.8 K in a field of ~ 8 kOe. On the other hand in (CePd3)8Mn the Mn sublattice undergoes a ferromagnetic transition around 35 K. The Ce ions form a dense Kondo-lattice and are in a paramagnetic state at least down to 1.5 K. A strongly correlated electronic ground state arising from Kondo effect is inferred from the large extrapolated value of C/T = 275 mJ/Ce-mol K^2 at T = 0 K. In contrast, the interstitial alloys RPd3Mnx (x = 0.03 and 0.06), also synthesized for the first time, have a spin glass ground state due to the random distribution of the Mn ions over the available "1b" sites in the parent RPd3 crystal lattice.Comment: 18 figures and 20 pages of text documen

    L1cam as an e-selectin ligand in colon cancer

    Get PDF
    Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the \u3b11,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation

    Spectral stability of noncharacteristic isentropic Navier-Stokes boundary layers

    Full text link
    Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun in the shock wave case, we study stability of compressive, or "shock-like", boundary layers of the isentropic compressible Navier-Stokes equations with gamma-law pressure by a combination of asymptotic ODE estimates and numerical Evans function computations. Our results indicate stability for gamma in the interval [1, 3] for all compressive boundary-layers, independent of amplitude, save for inflow layers in the characteristic limit (not treated). Expansive inflow boundary-layers have been shown to be stable for all amplitudes by Matsumura and Nishihara using energy estimates. Besides the parameter of amplitude appearing in the shock case, the boundary-layer case features an additional parameter measuring displacement of the background profile, which greatly complicates the resulting case structure. Moreover, inflow boundary layers turn out to have quite delicate stability in both large-displacement and large-amplitude limits, necessitating the additional use of a mod-two stability index studied earlier by Serre and Zumbrun in order to decide stability

    Emotional engagements predict and enhance social cognition in young chimpanzees

    Get PDF
    Social cognition in infancy is evident in coordinated triadic engagements, that is, infants attending jointly with social partners and objects. Current evolutionary theories of primate social cognition tend to highlight species differences in cognition based on human-unique cooperative motives. We consider a developmental model in which engagement experiences produce differential outcomes. We conducted a 10-year-long study in which two groups of laboratory-raised chimpanzee infants were given quantifiably different engagement experiences. Joint attention, cooperativeness, affect, and different levels of cognition were measured in 5- to 12-month-old chimpanzees, and compared to outcomes derived from a normative human database. We found that joint attention skills significantly improved across development for all infants, but by 12 months, the humans significantly surpassed the chimpanzees. We found that cooperativeness was stable in the humans, but by 12 months, the chimpanzee group given enriched engagement experiences significantly surpassed the humans. Past engagement experiences and concurrent affect were significant unique predictors of both joint attention and cooperativeness in 5- to 12-month-old chimpanzees. When engagement experiences and concurrent affect were statistically controlled, joint attention and cooperation were not associated. We explain differential social cognition outcomes in terms of the significant influences of previous engagement experiences and affect, in addition to cognition. Our study highlights developmental processes that underpin the emergence of social cognition in support of evolutionary continuity

    Orbitally Driven Spin Pairing in the 3D Non-Magnetic Mott Insulator BaVS3: Evidence from Single Crystal Studies

    Full text link
    Static electrical and magnetic properties of single crystal BaVS_3 were measured over the structural (T_S=240K), metal-insulator (T_MI=69K), and suspected orbital ordering (T_X=30K) transitions. The resistivity is almost isotropic both in the metallic and insulating states. An anomaly in the magnetic anisotropy at T_X signals a phase transition to an ordered low-T state. The results are interpreted in terms of orbital ordering and spin pairing within the lowest crystal field quasi-doublet. The disordered insulator at T_X<T<T_MI is described as a classical liquid of non-magnetic pairs.Comment: 4 pages, 5 figures, revtex, epsf, and multicol style. Problem with figures fixed. To appear in Phys. Rev. B Rap. Com

    Seminal plasma and prostaglandin E2 up-regulate fibroblast growth factor 2 expression in endometrial adenocarcinoma cells via E-series prostanoid-2 receptor-mediated transactivation of the epidermal growth factor receptor and extracellular signal-regulated kinase pathway

    Get PDF
    BACKGROUND: Prostaglandin E(2) (PGE(2)) has been shown to modulate angiogenesis and tumour progression via the E-series prostanoid-2 (EP2) receptor. Endometrial adenocarcinomas may be exposed to endogenous PGE(2) and exogenous PGE(2), present at high concentration in seminal plasma. METHODS: This study investigated fibroblast growth factor 2 (FGF2) mRNA expression and cell signalling in response to seminal plasma or PGE(2), using an endometrial adenocarcinoma (Ishikawa) cell line stably expressing the EP2 receptor (EP2 sense cells) and endometrial adenocarcinoma explants. RESULTS: Seminal plasma and PGE(2) induced a significant up-regulation of FGF2 expression in EP2 sense but not parental untransfected Ishikawa (wild-type) cells (P < 0.05). These effects were inhibited by co-treatment with EP2 receptor antagonist or inhibitors of protein kinase A, c-Src, epidermal growth factor receptor (EGFR) kinase or extracellular signal-regulated kinase (ERK) signalling. The treatment of EP2 sense cells with seminal plasma induced cAMP accumulation and phosphorylation of c-Src, EGFR kinase and ERK via the EP2 receptor. Finally, seminal plasma and PGE(2) significantly increased FGF2 mRNA expression in endometrial adenocarcinoma tissue explants via the EP2 receptor (P < 0.05). CONCLUSIONS: Seminal plasma and PGE(2) can similarly activate FGF2 expression and EP2 receptor signalling in endometrial adenocarcinoma cells. These data highlight the potential for seminal plasma exposure to facilitate tumorigenesis–angiogenesis in endometrial adenocarcinomas in vivo

    A Model for the Stray Light Contamination of the UVCS Instrument on SOHO

    Full text link
    We present a detailed model of stray-light suppression in the spectrometer channels of the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. The control of diffracted and scattered stray light from the bright solar disk is one of the most important tasks of a coronagraph. We compute the fractions of light that diffract past the UVCS external occulter and non-specularly pass into the spectrometer slit. The diffracted component of the stray light depends on the finite aperture of the primary mirror and on its figure. The amount of non-specular scattering depends mainly on the micro-roughness of the mirror. For reasonable choices of these quantities, the modeled stray-light fraction agrees well with measurements of stray light made both in the laboratory and during the UVCS mission. The models were constructed for the bright H I Lyman alpha emission line, but they are applicable to other spectral lines as well.Comment: 19 pages, 5 figures, Solar Physics, in pres
    • …
    corecore